Experimental optimization Lecture 3: A/B testing II: Design

David Sweet

Mid-term project **Run an A/B test**

- Three independent simulators, representing three engineered systems Simulators will return measurements via http
- Simulators will be slow
- You will run A/B tests on the simulators and
 - Write up your design, measurements, and analysis
 - Give a 5 minute presentation on the results during lecture #6

Review **Central limit theorem**

- Given N samples $x_i \sim X$ of any distribution,
- with sample mean $\mu = \sum_{i=1}^{N} x_i / N$, as $N \to \infty$

- IOW: Aggregate measurements are normally distributed lacksquare
- ...even if individual measurements are not
- (...when we have a lot of individual measurements)

A/B test Is B better than A?

- Goal: correctly choose the better of versions A & B
- Define $\mu = \mu_B \mu_A$ (μ_A is agg. meas. of BM(A), resp. μ_B)
- Restate goal: Is $\mu > 0$?
- About 68% of ind. meas. have $\mu > 0$
- $P\{\text{wrong}\} = 1 .68 = .32$

individual measurement N = 11200 1000 68% 800 600 400 200 -6 -4 -2 0 2 4 6 8 δ

A/B test design Probably not wrong

• Larger N ==> lower SE of agg. meas. ==> lower P{wrong}

 $P\{wrong\} = .32$

A/B test design **Minimize N**

- Larger N ==> higher experimentation costs, too
- A/B test design:

Pick the smallest N s.t. $P\{\text{wrong}\} < .05$

How? "Begin with the end in mind"

Analysis Imagine measurement is done

• At end of A/B test you have measurements $x_{A,i}$ and $x_{B,i}$, from which you calculate

•
$$\mu = \sum_{i} x_{B,i} / N - \sum_{i} x_{A,i} / N$$

- Ask: Is $\mu > 0$? (Is B better than A?) <== easy
- But μ is one sample from a distribution like ==>so you could be wrong

Aggregate measurement

Aside: notation **Notation for this lecture**

- $x_{A,i}, x_{B,i}$ individual measurements
- $\mu_A = \sum_i x_{A,i} / N$ aggregate measurement of BM(A)
- $\mu_B = \sum_i x_{B,i} / N$ aggregate measurement of BM(B)
- μ aggregate measurement [of the difference BM(B)-BM(A)]
- $\bar{\mu}$ expectation of aggregate measurement

Aside: notation **Notation for this lecture**

- σ_A standard deviation of $x_{A,i}$
- σ_B standard deviation of $x_{B,i}$
- $\hat{SE} = \sigma/\sqrt{N} = \text{standard error of } \mu$, where $\sigma^2 = \sigma_A^2 + \sigma_B^2$

Analysis **False positive**

- False positive (FP): you measure $\mu > 0$, i.e., you make the wrong decision
- rename: $P\{\text{wrong}\} = P\{FP\}$

If B is worse than A, i.e., expectation of BM(B) < BM(A), i.e. $\bar{\mu} < 0$, and

• Then, by CLT, $z \sim \mathcal{N}(0,1)$

Analysis Limit P{FP} to 5%

- Hypothesize $\bar{\mu} = 0$, then $\bar{z} = 0$
 - i.e., BM(B)=BM(A)
 - called null hypothesis
- P{FP} = prob. of z falling to right of vertical line
- If z > 1.64, probably $\bar{z} \neq 0$ (5%)

Why 1.64 Shape of nor

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	
!?										
 mal	distr	ributic	n							
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8804	0
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0
1.5	0.9332	0.9345	0.9357	0.9370	0.0292	0.9394	0.9406	0.9418	0.9429	0
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0
1.7	0.9554	0.9564	0.9573	0.9582	0.0501	0.9599	0.9608	0.9616	0.9625	0
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0

Why 1.64? Shape of normal distribution

from scipy.stats import norm norm.cdf(1.64)

0.9494974165258963

Analysis **Statistical significance**

- Decision rule:
 - If z > 1.64, act as if $\bar{z} \neq 0$
 - If z > 1.64, act as if B beats A
- Agg. measurement is statistically significant when z > 1.64

measurement N=10

Analysis **Practical significance**

- Say z > 1.64, should you switch to version B?
- What if $\mu =$ \$.01/day?
- Takes effort and risk to switch from A to B.
- Exogenous business decision (depends on you, team, firm, industry)
- Only switch if z > 1.64 and $\mu > PS$
- *PS* is practical significance level

Aside: t statistic Student's t

•
$$z = \frac{\mu}{\hat{SE}}$$
, N large

• If *N* not large, write $t = \frac{\mu}{\hat{SE}}$

• The variation in \hat{SE} makes *t* nonnormal, "t distribution"

Design Prepare for analysis stage

- Make N just large enough s.t. z > 1.64
 - — but no larger (to limit experimentation costs)
- Unpack:

$$z = \frac{\mu}{\hat{SE}} = \frac{\sqrt{N\mu}}{\sigma} > 1.64$$

and solve for N:

$$N > (\frac{1.64\sigma}{\mu})^2$$

 $\hat{SE} = \sigma / \sqrt{N}$

Design **Estimate inputs:** σ

- Don't know σ at design time, so estimate
- Either
 - Note: $\mu = \mu_B \mu_A$, $\sigma^2 = \sigma_B^2 + \sigma_A^2$
 - Estimate $\hat{\sigma}_A$ by stddev of logged data from version A
- Assume $\hat{\sigma}_{R} = \hat{\sigma}_{A}$, then $\hat{\sigma}^{2} = 2\hat{\sigma}_{A}^{2}$, or
 - Run a *pilot study* go measure σ_R directly

Design **Estimate inputs:** μ

$$N > (\frac{1.64\hat{\sigma}}{\mu})^2$$

- Smaller $\delta ==>$ larger N
- What's the smallest μ we'd actually care to measure?
 - $\mu = PS$
- Finally:

$$N > (\frac{1.64\hat{\sigma}}{PS})^2$$

The A/B test design

False negatives The other way to be wrong

- False positive: You measure "B better than A", but it isn't
- False negative: You measure "B not better than A", but it is
- Imagine that really $\bar{\mu} > 0$
- If you measure $\mu < 0$, that's a false negative
- Limit: $P\{FN\} < .20$

Design **Power analysis**

- Knowing that, during analysis, you'll accept a measurement that is
 - practically significant,
 - statistically significant, and
- The worst-case false negative rate will be when:
 - true $\bar{\mu} = PS$ <== smallest it could be
- FP when you measure z < 1.64 (reject B incorrectly)

this is fixed

N controls this

Design **Power analysis**

- Solution: Keep threshold (z=1.64) far from z = PS/SE
- Far enough so that you measure z < 1.64 less that 20% of the time
- Limits $P\{FN\} < .20$
- z .84 > 1.64, or

$$N > (\frac{2.48\hat{\sigma}}{PS})^2$$

Design **Design summary**

statistical significance level of 5%"

$$N > (\frac{2.48\hat{\sigma}}{PS})^2$$

"This A/B test measures a difference of precision PS with power of 80% at a

Terminology

- $\alpha = P\{FP\} = .05$
- $\beta = P\{FN\} = .20$
- False positive also called *Type I error*
- False negative also called Type II error
- Power = $1 \beta = .80 = P\{\text{True positive}\}$
- Individual measurement: trial, sample, observation, replicate
- A/B test == Randomized Controlled Trial (RCT) == Controlled experiment

A/B test design Summary

- Limit false positives to 5%
- Limit false negatives to 20%
- Estimate σ with logs & $\sigma_R = \sigma_A$ OR run a pilot study
- Switch to B if \bullet
 - statistical significance, z > 1.64, and
 - practical significance, $\delta > PS$

Design

Analysis